Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ashley T. Hulme* and Derek A. Tocher

Christopher Ingold Laboratory, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England

Correspondence e-mail: a.hulme@ucl.ac.uk

Key indicators

Single-crystal X-ray study T = 150 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.052 wR factor = 0.114 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Fluorouracil-1,4-dioxane (4/1)

A solvate of 5-fluorouracil with 1,4-dioxane, $4C_4H_3FN_2O_2$ - $C_4H_8O_2$, is reported. It crystallizes in the triclinic space group $P\overline{1}$. Two molecules of 5-fluorouracil are present in the asymmetric unit, together with one-half molecule of 1,4-dioxane, which lies on a centre of symmetry. In the crystal structure, ribbons of 5-fluorouracil molecules are joined by 1,4-dioxane-mediated interactions, forming sheets parallel to the (211) planes.

Comment

In the course of a polymorph screen performed on 5-fluorouracil, three solvates were discovered; the crystal structure of one of these solvates is reported here.

The title compound, (I), crystallizes in the space group $P\overline{1}$ with two molecules of 5-fluorouracil and one-half molecule of 1,4-dioxane in the asymmetric unit (Fig. 1). The 1,4-dioxane molecule is located on a crystallographic centre of symmetry.

Four distinct $N-H\cdots O$ hydrogen bonds occur in the crystal structure (Table 1). Both the crystallographically independent 5-fluorouracil molecules are present as centrosymmetric hydrogen-bonded dimers. One dimer contains the hydrogen bond N3-H3···O7ⁱⁱ (symmetry codes are given in Table 1), with a donor-acceptor distance of 2.857 (2) Å, while the other dimer contains the hydrogen bond N13-H13···O18ⁱⁱⁱ [2.824 (2) Å]. These dimers are linked, forming ribbon-like structures, by N1-H1···O17ⁱ hydrogen bonds. Adjacent

View (Watkin *et al.*, 1996) of the asymmetric unit of the title compound and the other half of the dioxane molecule, with atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.

Received 1 September 2004 Accepted 8 September 2004 Online 18 September 2004

Printed in Great Britain - all rights reserved

© 2004 International Union of Crystallography

ribbons of 5-fluorouracil molecules are linked, forming sheets parallel to the (211) planes *via* 1,4-dioxane molecules which act as N11-H11···O21 [N···O = 2.746 (2) Å] hydrogen-bond bridges (Fig. 2).

Experimental

5-Fluorouracil was obtained from the Aldrich Chemical Company Inc. The crystals were grown by solvent evaporation of a saturated solution of 5-fluorouracil in 1,4-dioxane.

Z = 1

 $D_x = 1.705 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 1082

2741 independent reflections 2131 reflections with $I > 2\sigma(I)$

reflections $\theta = 2.5-26.7^{\circ}$ $\mu = 0.16 \text{ mm}^{-1}$ T = 150 (2) KPlate, colourless $0.35 \times 0.24 \times 0.03 \text{ mm}$

 $R_{\rm int}=0.029$

 $\theta_{\rm max} = 28.3^\circ$

 $h = -9 \rightarrow 9$

 $k = -11 \rightarrow 11$ $l = -13 \rightarrow 13$

Crystal data

$4C_4H_3FN_2O_2\cdot C_4H_8O_2$	
$M_r = 608.44$	
Triclinic, P1	
a = 7.0847 (11) Å	
b = 8.4733 (13) Å	
c = 10.2291 (15) Å	
$\alpha = 98.128 \ (3)^{\circ}$	
$\beta = 96.913 \ (3)^{\circ}$	
$\gamma = 99.785 \ (3)^{\circ}$	
$V = 592.45 (16) \text{ Å}^3$	
× ,	

Data collection

Bruker SMART APEX
diffractometer
Narrow-frame ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.947, T_{\max} = 0.995$
5320 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0457P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 0.1655P]
$wR(F^2) = 0.114$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} < 0.001$
2741 reflections	$\Delta \rho_{\rm max} = 0.33 \text{ e } \text{\AA}^{-3}$
230 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e} \text{ Å}^{-3}$
All H-atom parameters refined	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O17^{i}$	0.83 (3)	1.98 (3)	2.798 (2)	167 (2)
N3-H3···O7 ⁱⁱ	0.91(2)	1.95 (2)	2.857 (2)	176 (2)
N11-H11···O21	0.91(2)	1.84 (2)	2.746 (2)	171 (2)
$N13-H13\cdots O18^{iii}$	0.85 (2)	1.98 (2)	2.824 (2)	175 (2)

Symmetry codes: (i) x, 1 + y, z; (ii) -x, 1 - y, 1 - z; (iii) 1 - x, 1 - y, 1 - z.

All H atoms were located in a difference map and were refined isotropically. C-H distances were in the range 0.93 (2)–1.00 (2) Å and N-H distances were in the range 0.83 (3)–0.91 (2) Å.

Figure 2

The hydrogen-bonded sheet structure, viewed along the a axis. Ribbons of 5-fluorouracil molecules are joined by 1,4-dioxane-mediated interactions, forming the sheet structure. Dashed lines indicate hydrogen bonds.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL*97.

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State'.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). *CAMERON*. Chemical Crystallography Laboratory, Oxford, England.